Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0297281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359031

RESUMO

Multiple studies report that melanomas are innervated tumors with sensory and sympathetic fibers where these neural fibers play crucial functional roles in tumor growth and metastasis with branch specificity. Yet there is no study which reports the direct neural recording and its pattern during in-vivo progression of the cancer. We performed daily neural recordings from male and female mice bearing orthotopic metastasizing- melanomas and melanomas with low metastatic poential, derived from B16-F10 and B16-F1 cells, respectively. Further, to explore the origins of neural activity, 6-Hydroxidopamine mediated chemical sympathectomy was performed followed by daily microneurographic recordings. We also performed the daily bioluminescent imaging to track in vivo growth of primary tumors and distant metastasis to the cranial area. Our results show that metastasizing tumors display high levels of neural activity while tumors with low metastatic potential lack it indicating that the presence of neural activity is linked to the metastasizing potential of the tumors. Moreover, the neural activity is not continuous over the tumor progression and has a sex-specific temporal patterns where males have two peaks of high neural activity while females show a single peak. The neural peak activity originated in peripheral sympathetic nerves as sympathectomy completely eliminated the peak activity in both sexes. Peak activities were highly correlated with the distant metastasis in both sexes. These results show that sympathetic neural activity is crucially involved in tumor metastasis and has sex-specific role in malignancy initiation.


Assuntos
Melanoma , Masculino , Feminino , Animais , Camundongos , Melanoma/patologia , Metástase Neoplásica
2.
J Neural Eng ; 20(6)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38100824

RESUMO

Objective. The primary challenge faced in the field of neural rehabilitation engineering is the limited advancement in nerve interface technology, which currently fails to match the mechanical properties of small-diameter nerve fascicles. Novel developments are necessary to enable long-term, chronic recording from a multitude of small fascicles, allowing for the recovery of motor intent and sensory signals.Approach. In this study, we analyze the chronic recording capabilities of carbon nanotube yarn electrodes in the peripheral somatic nervous system. The electrodes were surgically implanted in the sciatic nerve's three individual fascicles in rats, enabling the recording of neural activity during gait. Signal-to-noise ratio (SNR) and information theory were employed to analyze the data, demonstrating the superior recording capabilities of the electrodes. Flat interface nerve electrode and thin-film longitudinal intrafascicular electrode electrodes were used as a references to assess the results from SNR and information theory analysis.Main results. The electrodes exhibited the ability to record chronic signals with SNRs reaching as high as 15 dB, providing 12 bits of information for the sciatic nerve, a significant improvement over previous methods. Furthermore, the study revealed that the SNR and information content of the neural signals remained consistent over a period of 12 weeks across three different fascicles, indicating the stability of the interface. The signals recorded from these electrodes were also analyzed for selectivity using information theory metrics, which showed an information sharing of approximately 1.4 bits across the fascicles.Significance. The ability to safely and reliably record from multiple fascicles of different nerves simultaneously over extended periods of time holds substantial implications for the field of neural and rehabilitation engineering. This advancement addresses the limitation of current nerve interface technologies and opens up new possibilities for enhancing neural rehabilitation and control.


Assuntos
Nanotubos de Carbono , Tecido Nervoso , Ratos , Animais , Eletrodos Implantados , Nervo Isquiático/fisiologia , Eletrodos , Razão Sinal-Ruído , Nervos Periféricos/fisiologia
3.
Biosensors (Basel) ; 12(2)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35200374

RESUMO

The vagus nerve is the largest autonomic nerve and a major target of stimulation therapies for a wide variety of chronic diseases. However, chronic recording from the vagus nerve has been limited, leading to significant gaps in our understanding of vagus nerve function and therapeutic mechanisms. In this study, we use a carbon nanotube yarn (CNTY) biosensor to chronically record from the vagus nerves of freely moving rats for over 40 continuous hours. Vagal activity was analyzed using a variety of techniques, such as spike sorting, spike-firing rates, and interspike intervals. Many spike-cluster-firing rates were found to correlate with food intake, and the neural-firing rates were used to classify eating and other behaviors. To our knowledge, this is the first chronic recording and decoding of activity in the vagus nerve of freely moving animals enabled by the axon-like properties of the CNTY biosensor in both size and flexibility and provides an important step forward in our ability to understand spontaneous vagus-nerve function.


Assuntos
Nanotubos de Carbono , Nervo Vago/fisiologia , Animais , Ratos , Roedores
5.
Sci Rep ; 11(1): 1210, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441733

RESUMO

The vagus nerve is the largest autonomic nerve, innervating nearly every organ in the body. "Vagal tone" is a clinical measure believed to indicate overall levels of vagal activity, but is measured indirectly through the heart rate variability (HRV). Abnormal HRV has been associated with many severe conditions such as diabetes, heart failure, and hypertension. However, vagal tone has never been directly measured, leading to disagreements in its interpretation and influencing the effectiveness of vagal therapies. Using custom carbon nanotube yarn electrodes, we were able to chronically record neural activity from the left cervical vagus in both anesthetized and non-anesthetized rats. Here we show that tonic vagal activity does not correlate with common HRV metrics with or without anesthesia. Although we found that average vagal activity is increased during inspiration compared to expiration, this respiratory-linked signal was not correlated with HRV either. These results represent a clear advance in neural recording technology but also point to the need for a re-interpretation of the link between HRV and "vagal tone".


Assuntos
Frequência Cardíaca/fisiologia , Nervo Vago/fisiologia , Animais , Arritmias Cardíacas/fisiopatologia , Coração/inervação , Coração/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
6.
Sci Rep ; 10(1): 14824, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908180

RESUMO

Nerve fibers are known to reside within malignant tumors and the greater the neuronal density the worse prognosis for the patient. Recent discoveries using tumor bearing animal models have eluded to the autonomic nervous system having a direct effect on tumor growth and metastasis. We report the first direct and chronic in vivo measurements of neural activity within tumors. Using a triple-negative mammary cancer mouse model and chronic neural interface techniques, we have recorded neural activity directly within the tumor mass while the tumor grows and metastasizes. The results indicate that there is a strong connection between the autonomic nervous system and the tumor and could help uncover the mechanisms of tumor growth and metastasis.


Assuntos
Glândulas Mamárias Animais/inervação , Neoplasias Mamárias Experimentais/patologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica
7.
Sci Rep ; 8(1): 14149, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237487

RESUMO

Interfaces with the peripheral nerve provide the ability to extract motor activation and restore sensation to amputee patients. The ability to chronically extract motor activations from the peripheral nervous system remains an unsolved problem. In this study, chronic recordings with the Flat Interface Nerve Electrode (FINE) are employed to recover the activation levels of innervated muscles. The FINEs were implanted on the sciatic nerves of canines, and neural recordings were obtained as the animal walked on a treadmill. During these trials, electromyograms (EMG) from the surrounding hamstring muscles were simultaneously recorded and the neural recordings are shown to be free of interference or crosstalk from these muscles. Using a novel Bayesian algorithm, the signals from individual fascicles were recovered and then compared to the corresponding target EMG of the lower limb. High correlation coefficients (0.84 ± 0.07 and 0.61 ± 0.12) between the extracted tibial fascicle/medial gastrocnemius and peroneal fascicle/tibialis anterior muscle were obtained. Analysis calculating the information transfer rate (ITR) from the muscle to the motor predictions yielded approximately 5 and 1 bit per second (bps) for the two sources. This method can predict motor signals from neural recordings and could be used to drive a prosthesis by interfacing with residual nerves.


Assuntos
Músculos Isquiossurais/fisiologia , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/fisiologia , Interface Usuário-Computador , Animais , Cães , Eletrodos Implantados , Eletromiografia , Marcha/fisiologia , Caminhada/fisiologia
8.
Sci Rep ; 7(1): 11723, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916761

RESUMO

The ability to reliably and safely communicate chronically with small diameter (100-300 µm) autonomic nerves could have a significant impact in fundamental biomedical research and clinical applications. However, this ability has remained elusive with existing neural interface technologies. Here we show a new chronic nerve interface using highly flexible materials with axon-like dimensions. The interface was implemented with carbon nanotube (CNT) yarn electrodes to chronically record neural activity from two separate autonomic nerves: the glossopharyngeal and vagus nerves. The recorded neural signals maintain a high signal-to-noise ratio (>10 dB) in chronic implant models. We further demonstrate the ability to process the neural activity to detect hypoxic and gastric extension events from the glossopharyngeal and vagus nerves, respectively. These results establish a novel, chronic platform neural interfacing technique with the autonomic nervous system and demonstrate the possibility of regulating internal organ function, leading to new bioelectronic therapies and patient health monitoring.


Assuntos
Sistema Nervoso Autônomo , Biotecnologia/métodos , Estimulação Elétrica , Microeletrodos , Nanotubos de Carbono , Animais , Eletrodos Implantados , Nervo Glossofaríngeo , Humanos , Ratos , Software , Nervo Vago
9.
J Neural Eng ; 14(5): 056009, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28675376

RESUMO

OBJECTIVE: Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. APPROACH: To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. MAIN RESULTS: The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. SIGNIFICANCE: HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of controlling a prosthetic limb.


Assuntos
Algoritmos , Modelos Neurológicos , Nervos Periféricos/fisiologia , Animais , Teorema de Bayes , Cães , Eletromiografia/métodos , Humanos , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Nervo Isquiático/fisiologia
10.
J Vis Exp ; (116)2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27768048

RESUMO

Many attempts have been made to manufacture multi-contact nerve cuff electrodes that are safe, robust and reliable for long term neuroprosthetic applications. This protocol describes a fabrication technique of a modified cylindrical nerve cuff electrode to meet these criteria. Minimum computer-aided design and manufacturing (CAD and CAM) skills are necessary to consistently produce cuffs with high precision (contact placement 0.51 ± 0.04 mm) and various cuff sizes. The precision in spatially distributing the contacts and the ability to retain a predefined geometry accomplished with this design are two criteria essential to optimize the cuff's interface for selective recording and stimulation. The presented design also maximizes the flexibility in the longitudinal direction while maintaining sufficient rigidity in the transverse direction to reshape the nerve by using materials with different elasticities. The expansion of the cuff's cross sectional area as a result of increasing the pressure inside the cuff was observed to be 25% at 67 mm Hg. This test demonstrates the flexibility of the cuff and its response to nerve swelling post-implant. The stability of the contacts' interface and recording quality were also examined with contacts' impedance and signal-to-noise ratio metrics from a chronically implanted cuff (7.5 months), and observed to be 2.55 ± 0.25 kΩ and 5.10 ± 0.81 dB respectively.


Assuntos
Desenho Assistido por Computador , Eletrodos Implantados , Desenho de Equipamento , Estimulação Elétrica , Eletrodos , Nervos Periféricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...